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E�m Zelmanov erhielt die Fields-Medaille f�ur seine brilliante L�osung des

lange Zeit o�enen Burnside-Problems. Dabei handelt es sich um ein tieiegen-

des Problem der Gruppentheorie, der Basis f�ur das mathematische Studium

von Symmetrien. Gefragt ist nach einer Schranke f�ur die Anzahl der Sym-

metrien eines Objektes, wenn jede einzelne Symmetrie beschr�ankte Ordnung

hat. Wie alle bedeutenden mathematischen Resultate haben auch jene von

Zelmanov zahlreicheKonsequenzen. Darunter sind Antworten auf Fragen, bei

denen ein Zusammenhang mit dem Burnside-Problem bis dahin nicht einmal

vermutet worden war. Vor der L�osung des Burnside-Problems hatte Zelma-

nov bereits wichtige Beitr�age zur Theorie der Lie-Algebren und zu jener der

Jordan-Algebren geliefert; diese Theorien haben ihre Urspr�unge in Geometrie

bzw. in Quantenmechanik. Einige seiner dort erzielten Ergebnisse waren f�ur

seine gruppentheoritischen Arbeiten von ausschlaggebender Bedeutung. Auf

diese Weise wird einmal mehr die Einheit der Mathematik dokumentiert, und

es zeigt sich, wie sehr scheinbar weit auseinanderliegende Teilgebiete mitein-

ander verbunden sind und einander beeinussen.

Auszug aus der Laudatio von Walter Feit.

E�m Zelmanov has received a Fields Medal for the solution of the restric-
ted Burnside problem. This problem in group theory is to a large extent a
problem in Lie algebras.

In proving the necessary properties of Lie algebras, Zelmanov built on the
work of many others, though he went far beyond what had previously been
done. For instance, he greatly simpli�ed Kostrikin's results which settled the
case of prime exponent and then extended these methods to handle the prime
power case.

The results from Lie algebras which work for exponent pk with p an odd
prime are not adequate for the case of the exponent 2k. Zelmanov was the
�rst to realize that in this case the theory of Jordan algebras is of great
signi�cance.

1This document has been reproduced from DMV-Mitteilungen 4/94 with friendly per-
mission from Birkhaeuser Verlag
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Zelmanov had earlier made fundamental contributions to Jordan algebras
and was an expert in this area, thus he was uniquely quali�ed to attack the
restricted Burnside problem.

In the sequel, the background from the theory of Jordan algebras and
some of Zelmanov's contributions to this theory are �rst discussed. Then
the Burnside problems are described and some of the things that were ear-
lier known about them are listed. Section 4 contains some consequences of
the restricted Burnside problem. Finally, some relevant results from Lie and
Jordan algebras are mentioned.

1. Jordan Algebras

Jordan algebras were introduced in the 1930's by the physicist P. Jordan in
an attempt to �nd an algebraic setting for quantum mechanics. Hermitian
matrices or operators are not closed under the associative product xy, but
are closed under the symmetric products xy + yx; xyx; xn. An empirical
investigation indicated that the basic operation was the Jordan product

x � y =
1

2
(xy + yx);

and that all other properties owed from the commutative law x � y = y �
x and the Jordan identity (x2 � y) � x = x2 � (y � x). Jordan took these
as axioms for the variety of Jordan algebras. Algebras resulting from the
Jordan product in an associative algebra were called special. In a fundamental
paper Jordan, von Neumann, and Wigner classi�ed all �nite-dimensional
formally-real Jordan algebras. These are direct sums of 5 types of simple
algebras: algebras determined by a quadratic form on a vector space and
algebras of hermitian n� n matrices over the reals, complexes, quaternions,
and octonions. The algebra of hermitian matrices over the octonions is Jordan
only for n � 3, and is exceptional (= non-special) if n = 3, so there was
only one exceptional simple algebra in their list (now known as the Albert
algebra of dimension 27).

Algebraists developed a rich structure theory of Jordan algebras over
�elds of characteristic 6= 2. First, the analogue of Wedderburn's theory of
�nite dimensional associative algebras was obtained by Albert. Next this
was extended by Jacobson to an analogue of the Wedderburn-Artin theory
of semisimple rings with minimum condition. The role of the one-sided ideals
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was played by inner ideals, de�ned as subspaces B of the algebra A such
that UBA � B, where Uxy = 2x � (x � y) � (x � x) � y. If A is special,
then Ubx = bxb in the associative product. Jacobson showed that every non-
degenerate Jordan algebra (Uz = 0 implies z = 0) with d.c.c. on inner ideals
is the direct sum of simple algebras which are of classical type.

Up to this point, the structure theory treated only algebras with �niten-
ess conditions because the primary tool was the use of primitive idempotents
to introduce coordinates. In 1975 Alfsen, Schultz, and Str�omer obtained a
Gelfand-Neumark Theorem for Jordan C�-algebras, and once again the basic
structure theorem, but here again it was crucial that the hypoteses guaran-
teed a rich supply of idempotents.

In three papers (1979{1983), Zelmanov revolutionized the structure theo-
ry of Jordan algebras. These deal with prime Jordan algebras, where A is
called prime if UBC = 0 for ideals B and C in A, implies that either B or
C = 0. He proved the remarkable result that a prime non-degenerate Jordan
algebra is either special of hermitian type or of cli�ord type or is a form of
the 27-dimensional exceptional algebra. The proofs required the introduction
of a host of novel concepts and techniques as well as sharpening of earlier
methods e.g. the coordinatization theorem of Jacobson and analogues of the
results on radicals due to Amitsur.

One of the consequences of Zelmanov's theory is that the only exceptional
simple Jordan algebras, even including in�nite dimensional ones, are the
forms of the 27-dimensional Albert algebras. Another consequence is that the
free Jordan algebra in three or more generators has zero divisors (elements
a so that Ua is not injective). This is in sharp contrast to the theorem of
Malcev and Neumann that any free associative algebra can be imbedded in
a division algebra.

Motivated by applications to analysis and di�erential geometry, Koecher,
Loos, and Meyberg extended the structure theory of Jordan algebras to tri-
ple systems and Jordan pairs. Zelmanov applied his methods to obtain new
results on these.

To encompass characteristic 2 (which is essential for applications to the
restricted burnside problem) it is necessary to deal with quadratic Jordan al-
gebras. These were introduced by McCrimmon and based on the axiomatized
properties of the quadratic-linear product Uab.

In a joint paper with McCrimmon, the results on prime algebras were
extended to quadratic Jordan algebras.
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2. Burnside Problems

A group is locally �nite if every �nite subset generates a �nite group. In 1902
W. Burnside studied torsion groups and asked when such groups are locally
�nite. The most general form is the Generalized Burnside Problem.
(GPB) Is a torsion group necessarily locally �nite?
A group G has a �nite exponent e if xe = 1 for all x in G and e is the smallest
natural number with this property. A more restricted version of GPB is the
ordinary Burnside Problem.
(BP) Is every group which has a �nite exponent locally �nite?
There is a universal object B(r; e), (the Burnside group of exponent e on r
generators) which is the quotient of the free group on r generators by the

subgroup generated by all eth powers. BP is equivalent to
(BP)' Is B(r; e) �nite for all natural numbers e and r?
Burnside proved that groups of exponent 2 (trivial) and exponent 3 are locally
�nite. In 1905 Burnside showed that a subgroup of GL(n;C) of �nite expo-
nent is �nite. I. Schur in 1911 proved that a torsion subgroup of GL(n;C) is
locally �nite. This showed that the answers to BP or GBP would necessari-
ly involve groups not discribable in terms of linear transformations over C.
Other methods were required.

During the 30's people began to study �nite quotients of B(r; e) and
considered the following statement.
(RBP) B(r; e) has a unique maximal �nite quotient RB(r,e).
W. Magnus called the question of the truth or the falsity of RBP the restricted
Burnside problem. If such a unique maximal �nite quotient RB(r; e) exists
for some r and e, then necessarily every �nite group on r generators and
exponent e is a homomorphic image of RB(r; e). If RB(r; e) exists for some
e and all r we say that RBP is true for e.

3. Results

In 1964 E. Golod constructed in�nite groups for every prime p, which are
generated by 2 elements and in which every element has order a power of p,
thus giving a negative answer to GBP. In 1968 S.I. Adian and P.S. Novikov
showed that B(2; e) is in�nite for e odd and e > 4380, thus giving a negative
answer to BP.

In a seminal paper P. Hall and G. Higman in 1956 proved a series of results
on �nite simple groups which, together with the classi�cation of such groups,
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showed that the truth of RBP will follow once it is proved that RB(r; pm)
exists for all primes p and all natural numbers m and r.

In 1959 I. Kostrikin announced that RB(r; p) exists for a prime p and any
natural number r. Kostrikin's argument had some di�culties. He published
a corrected and updated version of his proof in his book Around Burnside
(Russian, MR89d, 20032) which contains numerous references to Zelmanov.

In 1989 Zelmanov announced that RBP is true for all exponents pm with
p any prime, and hence for all exponents by the remarks above. The proof ap-
peared in 1990-91 in Russian. English translations appeared in Math USSR,
Izvestia 36(1991) 41-60, and Math USSR Sbornik 72(1992) 543-564.

4. Some Consequences

This section contains some consequences of RBP. The ideas used in the proof,
in addition to the actual result, have also been applied widely.

The next 3 results were proved by Zelmanov as direct consequences of
RBP.
Theorem 1. Every periodic pro-p-group is locally �nite.
Corollary 2. Every in�nite compact (Hausdor�) group contains an in�nite
abelian subgroup.
Theorem 3. Every periodic compact (Hausdor�) group is locally �nite.

Since then, Zelmanov and others, have made several further contributions
to the study of pro-p-groups.

5. Lie Algebras

Let G be a �nite group of exponent pk, p a prime. Let G = G0 and Gi+1 =
[G;Gi] for all i. Choose s with Gs 6=< 1 >, Gs+1 =< 1 >. De�ne

L(G) =
sX

i=0

Gi=Gi+1

as abelian groups. Then L(G) becomes a Lie ring with [aiGi; ajGj] = [ai; aj]Gi+j+1,
and L(G) has the same nilpotency class as G. Furthermore L(G)=pL(G) is a
Lie algebra over Zp.

A Lie algebra L satis�es the Engel identity (En) if ad(x)n = 0 for all x in
L. An element x in L is nilpotent if ad(x)n = 0 for some n. If G has exponent
p then L(G) is a Lie algebra over Zp which satis�es (Ep�1). Kostrikin proved
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Theorem 1. If L is a Lie algebra over Zp which satis�es (Ep�1) then L is
locally nilpotent.

Theorem 1 implies the Existence of RB(r; p), and so yields RBP for prime
exponent. Observe that for prime exponent e = p, the case p = 2 is trivial,
so that it may be assumed p > 2. This is in sharp contrast to prime power
exponents e = pk, where p = 2 is the most complicated case.

Kostrikin called an element a of L a sandwich if [[L; a]; a] = 0 and
[[[L; a]; L]; a] = 0. L is a sandwich algebra if it is generated by �nitely many
sandwiches. A �rst critical result by Kostrikin and Zelmanov is
Theorem 2. Every sandwich Lie algebra is locally nilpotent.
Theorem 2 is essential for the proof of Theorem 1.

The main result in Zelmanov's paper on RBP (Math USSR, Izvestia 1991)
is rather technical but it has the following consequences.
Theorem 3. Every Lie ring satisfying an Engel condition is locally nilpotent.
Theorem 4. RB(r; pk) exists for p an odd prime.

Once again an essential part of the proof requires Theorem 2. Let L
be a Lie algebra over an in�nite �eld of characteristic p which satis�es an
Engel condition. The way to apply Theorem 2 is to construct a polynomial
f(x1; : : : ; xt) that is not identically zero, such that every element in f(L) is a
sandwich in L. Actually such a polynomial is not constructed but its existence
for p > 2 follows only after a very complicated series of arguments. This of
course settles RBP for odd exponent.

6. The Case of Exponent 2k

The outline of the proof of RBP for exponent 2k is very similar to that for
exponent pk with p > 2 described in the previous section. However, the
construction of the function f is vastly more complicated. It is here that the
quadratic Jordan algebras play an essential role.
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