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Pierre-Louis Lions wurde f�ur seine gl�anzenden Beitr�age zur Theorie der

nichtlinearen partiellen Di�erentialgleichungen mit der Fields-Medaille aus-

gezeichnet. Eines der Hauptziele in diesem Gebiet ist Entwicklung von Theo-

rien, welche Existenz, Eindeutigkeit und Stabilit�at von L�osungen f�ur m�oglichst

umfassende Klassen von Gleichungen sicherstellen. Pierre-Louis Lions spielte

die f�uhrende Rolle bei der Entstehung einer solchen Theorie, die heute als

"
Viskosit�atsmethode\ bekannt ist. Sie zeichnet sich durch besondere Eleganz

und umfassende Einsetzbarkeit aus und erlaubt dar�uberhinaus die Behand-

lung zahlreicher Beispiele, die in den Anwendungen von gro�er Bedeutung

sind. Zus�atzlich ist ihm in den letzten Jahren ein wichtiger Durchbruch in

der Theorie der Boltzmann-Gleichung und �ahnlicher Transportgleichungen

gelungen. Ohne Zweifel hat Lions die f�uhrende Rolle bei der Entwicklung des

Gebiets in den letzten f�unfzehn Jahren eingenommen.

Auszug aus der Laudatio von Srinivasa S.R. Varadhan.

Pierre Louis Lions has made unique constributions over the last �fteen years
to mathematics. His contributions cover a variety of areas, from probability
theorey to partial di�erential equations (PDEs). With in PDE he has done
several beautiful things in nonlinear equations. The choice of his problems
has always been motivated by applications. Many of the problems in Physics,
Engineering and Economics when formulated in mathematical terms lead
to nonlinear PDEs. They are often very hard problems. The nonlinearity
makes each equation di�erent. The work of Lions is important because he
has developed techniques that, with variations, can be applied to classes of
such problems. Saying something is nonlinear is not saying much. In fact
it could even be linear. The entire class of nonlinear PDEs is therefore very
extensive and one does not expect an all inclusive theorey. On the other hand
one does not want to treat each example di�erently and have a collection of
unrelated techniques. It is thus extremely important to identify large classes
that admit a uni�ed treatment.

1This document has been reproduced from DMV-Mitteilungen 4/94 with friendly per-
mission from Birkhaeuser Verlag
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In dealing with nonlinear PDEs one has to allow for nonclassical or nons-
mooth solutions. Unlike the linear case one cannot use the theory of dis-
tributions to de�ne the notion of a weak solution. One has to invent the
appropriate notion of a generalized solution and hopefully this would cover a
wide class and be su�cient to yield a complete theory of existence, uniqueness
and stability for the class.

Due to the very limited time that is available, I shall focus on three
areas within nonlinear PDE where Lions has made major constributions.
The �rst is the so called viscosity method. This is a long story where, over
many years, in partial collaboration with others (mainly Evans, Crandall
and Ishii) Lions has developed the method which is applicable to the large
class of nonlinear PDEs known as fully nonlinear second order degenerate
elliptic PDEs. The class contains very many important subclasses that arise
in di�erent contexts.

By a nonlinear PDE one is trying to solve an equation involving an un-
known function and its derivatives. Let u be a function in a region G and let
Du;D2u; :::;Dku be its derivatives of order up to k. A non linear PDE is an
equation of the form

F [x; u(x); (Du)(x); (D2u)(x); :::; (Dk(u))(x)] = 0

in G with some boundary conditions on @G. Such a PDE is said to be nonli-
near and of order k. The viscosity method applies in cases where k = 2 and
F (x; u; p;H) has certain monotonicity properties in the arguments u and H.

More precisely it is nondecreasing in u and nonincreasing in H. Here u is
a scalar and H is a symmetric matrix of size n� n with the natural partial
ordering for symmetric matrices.

There are many examples of such functions:

� Linear elliptic equations:

�
X
i;j

aij(x)
@2u

@xi@xj
(x) + f(x) = 0

where the matrix aij(x) is uniformly positive de�nite. In this case the
function F is given by

F (x; u; p;H) = �trace(a(x)H) + f(x)
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� First order equations:

f(x; u(x); (Du)(x)) = 0

These include Hamilton-Jacobi equations where it all started. One ad-
ded a term of the form �� to the equation and constructed the solution
in the limit as � went to zero. The theory owes its name to its early
origins.

If one has a family F� of such functions one can generate a new one by
de�ning

F = sup
�
F�

If one has a two parameter family F�� of such functions one can generate a
new one by de�ning

F = sup
�

inf
�
F��

Such examples arise naturally in control theory and game theory and are
referred to as Hamilton-Jacobi-Bellman and Isaacs equations.

In order to understand the notion of a generalized solution it is convenient
to talk about supersolutions and subsolutions. Suppose u is a subsolution i.e.

F (x; u(x); (Du)(x); (D2u)(x)) � 0

and we have another function �, which is smooth, such that u � � has a
maximum at some point x̂ then by calculus Du(x̂) = D�(x̂) and D2(u)(x̂) �
D2(�)(x̂). From the monotonicity properties of F it follows that

F (x̂; u(x̂); (Du)(x̂); (D2u)(x̂)) �

F (x̂; u(x̂); (D�)(x̂); (D2�)(x̂)):

Therefore
F (x̂; u(x̂); (D�)(x̂); (D2�)(x̂)) � 0:

The last inequality makes sense without smoothness assumption on u. We
can try to de�ne a nonsmooth subsolution as a u that satis�es the above for
arbitrary smooth � and x̂ provided u�� has a maximum at x̂. The de�nition
of a super solution is similar and a solution is one that is simultaneously
a super and sub solution. Let us consider [�rst] a Dirichlet boundary value
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problem where we want to �nd a u that solves our equation and has boundary
value zero. A key step is to establish the comparison theorem that if u is
a subsolution and if v is a supersolution in a bounded domain G and if
u � v on the boundary @G then u � v in G [ @G. From this point on, the
theory proceeds in way similar to the classical Perron's method for solving
the Dirichlet Problem.

The second body of work that I want to discuss has to do with the Boltz-
mann equation and similar equations. During the last six or seven years
Pierre-Louis Lions has played the central role in new developments in the
theory of the Boltzmann Equation and similar transport equations. These
are important in kinetic theory and arise in a wide variety of physical ap-
plications. We will for simplicity stay within the context of the Boltzmann
equation. In R3 we have a collection of particles moving along and interac-
ting through \collisions" among themselves. Since we do not want to keep
track of the position and velocities of the particles individually we abstract
the situation by the density f(x; v) of particles that are at x with velocity v.
Even if there is no interaction, the density f(x; v) will change in time due to
uniform motion of the particles. The time dependent density f(t; x; v) will
satisfy the equation

@f

@t
+ v:rxf = 0:

The collisions will change this equation to

@f

@t
+ v:rxf = Q(f; f):

HereQ is a quadratic quantity that represents binary collisions and its precise
form depends on the nature of the interaction. Generally it looks like

Q(f; f) =
Z Z

R3
�S2

dv�d! B(v � v�; !)ff
0f 0
�
� ff�g

The notation here is standard: v and v� are the incoming velocities and v0 and
v0
�
are the outgoing velocities. B is the collision kernel. For given incoming

velocities v and v�, ! on the sphere S2 parametrizes all the outgoing velocities
compatible with the conservation of energy and momenta.

v0 = v � (v � v�; !)!; v0
�
= v + (v � v�; !)!

4



and f 0; f�; f
0

�
are f(t; x; v) with v replaced by the correspondingly changed

v0; v� and v0
�
.

This problem of course has a long history. Smooth and unique solutions
had been obtained for small time or globally for initial data close to equili-
brium. Carleman had studied spatially homogeneous solutions. But a general
global existence theorem had never been proved. The work of Lions (in col-
laboration with DiPerna) is a breakthrough for this and many other related
transport problems of great physical interest.

The third and �nal topic that I would like to touch on is the contri-
bution Lions has made to a class of variational problems. There are many
nonlinear PDEs that are Euler equations for variational problems. The �rst
step in solving such equations by the variational method it to show that the
extremum is attained. This requires some coercivity or compactness. If the
quantity to be minimized has an \energy" like term involving derivatives,
then one has control on local regularity along a minimizing sequence. This
usually works if the domain is compact. If the domain is noncompact the
situation is far from clear. Take for instance the problem of minimizing

Z
RN
j(rf)(x)j2dx�

Z Z
V (x� y)f2(x)f2(y) dxdy

over functions f with L2 norm � (�xed positive number). Here V is a reasona-
ble function decaying at1. Because of translation invariance, the minimizing
sequence must be centered properly in order to have a chance of converging.
The key idea is that, in some complicated but precise sense, if the minimi-
zing sequence cannot be centered, then any member of the sequence can be
thought of as two functions with supports very far away from each other.
If we denote the in�mum by �(�) then along such sequences the in�mum
will be �(�1) + �(�2) with �1 + �2 = �, 0 < �1; �2 < � rather than �(�). If
independently one can show that �(�) is strictly subadditive then one can
prove the existence of a minimizer. This idea has been developed fully and
applied successfully by Lions to many important and interesting problems.
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